2nd

A

(20322)

Roll No.

B. Sc.(Hons.)(Com. Sc.)-III Sem.

NS-3300(CV-III)

B. Sc. (Hons.) Examination, Dec. 2021

COMPUTER SCIENCE

Mathematics-III (CBOT)

(BHCS-303)

Time: 11/2 Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A

(Very Short Answer Type Questions)

Attempt any *two* questions out of the following five questions. Each question carries $7\frac{1}{2}$ marks. Very short answer is required. $7\frac{1}{2} \times 2 = 15$

- 1. Discuss the significance and scope of operation research in modern management.
- 2. Explain the term 'artificial variable' and its use in linear programming.
- 3. Prove that the transportation problem always possesses a feasible solution.
- 4. What is a project ? Give two examples.
- 5. Define saddle point and the value of game with example.

Section-B

(Short Answer Type Questions)

Attempt any *one* question out of the following three questions. Each question carries 15 marks. Short answer is required. $15 \times 1 = 15$

NS-3300(CV-III)

6. Use two-phase simplex method to solve the problem:

Minimize:
$$z = \frac{15}{2}x_1 - 3x_2$$

Subject to constraints:

$$3x_{1} - x_{2} - x_{3} \ge 3$$

$$x_{1} - x_{2} + x_{3} \ge 2$$
and
$$x_{1} - x_{2} + x_{3} \ge 0$$

$$x_{2} - x_{3} \ge 0$$
acedca.in

- 7. Explain the application of Vogel's approximation method (VAM) with an example.
- 8. Solve the following (2×4) game:

NS-3300(CV-III)

Section-C

(Detailed Answer Type Questions)

Attempt any *two* questions out of the following five questions. Each question carries $22\frac{1}{2}$ marks. Answer is required in detail. $22\frac{1}{2} \times 2 = 45$

- 9. Write short notes on the following:
 - (i) Role of operation research in a decisionmaking science.
 - (ii) Advantages and limitations of operation research study..in
 - (iii) Static and dynamic model.
- 10. Solve the following problem by dual simplex method:

Maximize: $z = -2x_1 - x_3$

Subject to:

$$x_1 + x_2 - x_3 \ge 5$$

$$x_1 - 2x_2 + 4x_3 \ge 8$$

and

$$x_1, x_2, x_3 \ge 0.$$

NS-3300(CV-III)

11. Determine the optimum basic feasible solution of the following transportation problem:

	Α	В	C	Available
I	50	30	220	1
II	90	45	170	3
III	250	200	50	4
Requird	4	2	2	

12. A project has the following time schedule:

Activity	Time in weeks
1-2	acedca.in4
1-3	1
2-4	1
3-4	1
3-5	6
4-9	5
5-6	4
5-7	8
6-8	1
7-8	2
8-9	1
8-10	8 _
9-10	7

Construct the PERT network and compute:

- (i) T_E and T_I for each events
- (ii) Float for each activity
- (iii) Critical path and its duration.
- 13. Explain maxi-min and mini-max principles used in Game theory.

acedca.in