* ENGINEERING
. COLLEGE HUB

NN AN s A T NN

“You can be discouraged by failure or you can learn from ‘
it. So go ahead and make mistakes. Make all you can be- : X

cause that's where you will find success, on the other side
of failure.”

.
e
- -
e
13 . +
* ¥ -
:
+

+
o
-

| n :0 4+ év: %n H)
SCAN FOR MORE.. DN NN

https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://engineeringcollegehub.wordpress.com/

E((cl—l @ Qmm ‘CnC Date: / / J

it -1 One Ghet * PY(Q.

T G

_rn Mmd an\ uo)u‘ko S{mph P\Owﬂqon %)ﬂnomm/(

QC\AI\(‘ pnn(‘!P{“ O'{‘_ Ptjl'ﬁ)nﬂ. \///

Python Vartables - A\@
J)

Qa!—a 4—3%&5 : %\)

Puthon besic Opwiakod Caly L5~

N
Dutbon blocks N
()
Diclasing \;%mc\ Varng. Nbrm\\r-u‘é Qeda tipM -‘,;h‘“)ﬂmj‘
G 0 ete.
@)1

@\)Bgc\oxhe OMN TEIYGRAM .

/ e — —_— ’ \/

Paga No..]
Date / / l

Pu‘ﬁ—\on o

__—::(/ _—

| Puthon % a atnt ﬂGQ — nrmr)nkn o bt oﬁxhu’ ‘ot
9] P T "
rohhed— Oionte G.InAv igh — Ia\u! ?Hn aramyni A9

\anquags .

- d d Ved

I wal rnm*ncl ké (\nm'r_n van . RoMlum C\U)dna

e
Negs- 90}
o ord o Puﬁmﬂ Qﬁ
| v —
QQAC\; 4o bianipn W™ ®
E,M((Jr ‘o Ynmr:) N\l : : ' /@% A
Saty N ma'ntain ¢ (?AU
78 2’
Sca ‘n"\«? u) %
LT Pra aampalng,)
d &

‘Tsmo‘:l—\ mﬁ% Dy el momsn'}‘ C/C}’V

a\\@@ QS*WFJ’H ﬁ ‘on

®

N

X “Lut j;x\rmu\ouﬂ

e

Shop o applicakion |

%ﬁ”“ PJ-\GWM
|
R‘?Cem()fh Co o I

r Relf nk i exl. -~

¢97

W ?S‘H\hf\ls D.A\Ldnf\m?nl" C‘J(L.
(Shont T frpplicakontt—
—T%T bt haviowr I
YS'\OP Hu applicakion
[fEdH' Progptom (ody
Igl,mh‘ﬂ.m
=2 Ao dentBiy 14 a tamp - given) Yo
func Hen C/\o/%,: madsly an “adien
Pﬁoqymm. @
NE ©
RD -Fo)‘1 Ncim;f\n @
S 0 el
= [Z %ﬁ) (033 ‘nﬁ (3 nnanSQDJU ‘e_gl"cm\—ma .
@
=) ’r&@o Jrnal AtNg c}\gnod‘,mA Can by (xﬁ,m/A,,numky
o;1 LA ok]
=1 Card SunXihvd :
—) (ny\hh‘)" b—a\ a MVXJ 11000:31(),“ : 4
RMJSH\Uol Kmmar(oL(-)
d
e |
—? Th 0, r)_ﬂhonnmrmn \ann\?oﬂ/\’ Q-PAJTI\IJG‘ k.l_u/mxck,\ﬂ&&kv
J ¢ o
axy f\‘l‘,.o-l— waaxdd hawn ¢ Cmmcd moaNV\QJ *‘;l
e cjnml— by owiad P‘Jr\}*‘[‘lm 4 ?:}“
el s glabal ot el

b
i [Paga No.. 1
‘k*__g Data / / J
:- fm,x Aand Toadinkalbion o
b : P(u}ﬂ‘mn dou et g b yia (Mf% To x:_r)é{‘_r}_ab:x L\QCKL
b (ﬂb {24y ‘Fbm c loss Gno\ “pun('l"l‘(‘sl/\'-
}
3 ‘ ())‘0(k/! ﬁ‘\. Cadt Ay C‘-!nm'hz;l 53 Line fndsvitabinn
’ |
r ! ("% & i£ KT N
— ; brtnk (Y Toy)
| ey " ;
13 | - \V
E i bount (0 Fqlu"} ' &
t ’ Commseats n Pa'ﬂmn p C??/\

gy

— t‘mﬂh Lin? (emmg@u

Phﬁmn \1@)1!@

es

o ——

\Iamcé@m axtt —aathing

L b Suptaonse o Nl Mmooty \ocaliand

(h) Q@oju Va)uu T4 vg\”OnhA‘ ’Hna‘l- Lohen Lou’ CngJ*x

a smrtialM U UL Gaond Spall [n oty Murory.
Bausd S S 'H «-\LZHJJ MD_ a_vartiably , At
;’r‘\'hx rra}ui,m o) Unrn}m ral Moy

i

g’nham . dacimaks ot (‘Lmn-

Usy (an Q;'D)u
d’ . ' | 1

Page No.:]
Date: / / J

S\'tmrlcu"(cl Ddh —En\o,u.

c‘gu%mn hat \vartoud Q‘\’C\J\r\nﬂa An}o ’mpm M

nué +o AL\ ‘N e\’\ﬂl m\i)u\ohom \{)m\xt\)\& 6.0 'HMW\

(‘DUH\O(\ hos S gxram\omc; Aala 3@)?”—‘

Norabags = Cind | floak, rnm%o\pﬂ,

Sbu‘ag = (auld rr\'5 ot)

S

._/

L\’é"" — (rb\\At,\-\‘on O’\ G"nm}vx}d\ AQ\“)
%\)

2

T\;m\x;) (s frotliart % \A/.SX" ‘00*“ (?mr;\()HLU>
\ : @) |

Dickinnary = (;KAUI \la 11 D@Y
- dJ J C@) ,

_@*A&%ng _Bj 1M)_n 4 ac Ka

Ia©m)dmn~, a B\;K A_a Griaup mlb stake munt«
45:&}' ard " n r\nhbc\ Jm'm‘\’\r\gn y '

d
Bloeks catt yad do Aﬂbjm A Scopt ol vanlablis
ond Yo Canbrel A Blew c\, ext i Hon |

o lalalalalalal ol e € ﬂ(‘jf (létt‘l‘é\ ‘.\ &*‘}‘}b}l(‘(\

c.q I TF’ Cono\,\‘\-“cm;
d P ‘
';H; L g

https://github.com/krishna9809/Python-Programming-2ndYear/tree/main/Unit-1

Python Numbers

1"

ython:

There are three numeric types

e

2. float
3. complex

Variables of numeric types are created when you assign a value to them:

1

int

1
y = 2.8 # fleat
z = 1j # complex
print{type(x))
print{typely))
print{typelz))
Int

4

Int, or integer, is a whole number, positive or negagiwe, withoutdecipslsyaf unlimited length.

Example
Integers:

¥y = 35656222554BB87711
z = -3255522
print(type(x))
- Y
printitypetyl)
print{typelz)})
-l J
Float
Float, or "floatiy pdane=number™Jls a number, positive or negative, containing one or more decimals.
S]
Example

Floats:

¥ = 1.18

Operator => Operators are used to perform operations on variables and values.
Python divides the operators in the following groups:

Arithmetic operators

Assignment operators

Comparison operators

Logica operators

Bitwise operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values AG pefforiteepmon mg@hematical operations:

+ Addition X +y
- Subtraction X -y
Multiplication X *y

Division X /y

Modulus X ¥y
#¥ Exponentiation ¥ *#
'/ Floor division x &Sy

Python Assignment Operators
Assignment operators are used to assign values to variables:

X

He oH: He W He W He
— g e, E i
"-.TFII 1 Ilﬂ-
E A
—
T:PII 1 Ilil-ll
oLy LU Lu Lo Lo oLn
oo ow o om
o o LA
o e H o
L L L L b

ff=3 ¥ =2x// 3

Python Comparison Operators

Comparison operators are used to compare two values:

= Equal

1= Not equal

> Greater than

< Less than

>= Greater than or eqgual to
<= Less than or egual to
#a=4

#b=2

print(a==b)

print(a'=b)

print(a>b)

print(a<b)
print(a>=b) (ff:j—ﬂ
print(a<=b)

Ques 1: Programs tg§

&
e RS
#a-= 1ntt1nputf§ er fi Number "))
RS =5
b = int(in p econd Number "))
#c=a+b

print("Sum = ",c)

Ques 2: Program to calculate area of Circle

radius = int{input("Enter the Radius of Circle--= "})

area = 3.14 * radius * radius

print("Area of Circle --> ", area)

Python Logical Operators

Logical operators are used to combine conditional statements:

and Returns True if both statements are true X o=
or Returns True if one of the statements is true ¥ <5o0rx<4

LR
kL1
=
-4
iyl
[
=

returns False if the result is true notlx <

=
[4e]
(¥4
[§5]
~+
=y
T
-
T
el
g
—+

not

T
i}

nd a=10)

print(a<l and a
<1 or a<10))

printinot(

[=E k]

Python Bitwise Operators
Bitwise operators are used to compare (binary) numbers:

N
g AND @

Sets each bit to 1 if both bits are 1 <§3>

- &
Sets each bit to 1 if one of two bits is 1 <3§§> x|y
~ XOR @

Sets each bit to 1 if only one of two bigs 1%

~ NOT @
Inverts all the bits ~X
< Zero fill left shift N <§§E>

A
- - . S - "
Shift left by pushing zeros-in. from thel Fight X << 2
and let the leftmost &pts/fall off
= Signed right shigk
Shift right by peshipg copies of/the leftmost
- 2 ’ : .
bit in from thé}Left, and lat™“the rightmost bits
off © me DTN
fall off Q X o=> 2

?

(75}
.,

H=
'\._] |_||
[
S <
o

o
o
J LN

[=
I
it

printia&b)
printialb)
printia™b)
print({~c)

* ENGINEERING
. COLLEGE HUB

NN AN s A T NN

“You can be discouraged by failure or you can learn from ‘
it. So go ahead and make mistakes. Make all you can be- : X

cause that's where you will find success, on the other side
of failure.”

.
e
- -
e
13 . +
* ¥ -
:
+

+
o
-

| n :0 4+ év: %n H)
SCAN FOR MORE.. DN NN

https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://engineeringcollegehub.wordpress.com/

A
& \\\\
PVthﬂllFI‘Og ramming ccsoz / sccsozs
" BCC302H/BCCA02H
%

Unit-2 ONE SHOT

Python Program Flow Control Conditional Blocks
PYQS + IMP QUESTIONS

NHEDITE

=2 p—
Pythc%@?rngram Flow Control Conditional blocks: if, else and else if, Simple for loops in
pyftg@n, For loop using ranges, string, list and dictionaries. Use of while loops in python,
L::r%p manipulation using pass, continue, break and else. Programming using Python

conditional and loop blocks.

Conditional Statements - if else
Loops - For, While

Pass, Continue and break - (2022-23)
If-else and Loops Programs - PYQs

e°
Decision Making :

&

o Deci i@??—making is the anticipation of conditions occurring during the execution of a

program and specified actions taken according to the conditions.

Decision structures evaluate multiple expressions, which produce TRUE or FALSE as
o the outcome: You need to determine which action to take and which statements to

execute if the outcome is TRUE or FALSE otherwise.

Python programming language assumes any non-zero and non-null values as TRUE,

and any zero or null values as FALSE value.

NN

Python programmln\fslanguﬁe provides the following types of decision-making

If...else statements nested if statements

statements. &

An if statémem consists of
a boolean expression
followed by one or

more statements.

An if statement can be
followed by an optional
else statement, which
executes when the boolean
expression is FALSE.

You can use one if or else
If statement inside another
if or else if statements..

B\
AN
%~ AL ¢
C/O \\
Q ~—

QL
Let’s Code Decision Making Statements

He oHe W B e =

H=

He o W B M K W W W e

1. if Statement G 1\;7 @\)
:;xl: 5: ﬁ’é f-\\(\};g @

print("x is greater tid

&
2. 1f-else Stat ?é)\

Q

¥=31 %/\
if x = 5:

print("x 1s grea n 5"}
else:

print("x is mot greater than 5")
3. Nested i1f-Else Statement
score = 95
if score == 9@:

grade = 'A’
elif score == 80:

grade = 'B’
elif score >= 70:

grade = 'C’
else:

grade = 'F'
print(f"Your grade is {grade}")

Loops in Python

A loop statement allows us to execute

a statement or group of statements
multiple times.

types of loops:

e While Loop
e ForlLoop
e Nested Loop

With the while loop we cafi execute a set'sf statements as long as a condition is true.

A
\p

Statement X

4

Update the | ?

condition expression ~
) <_ Condition

.-"-F-

Statement Block <
: FALSE

Statement Y

\\\ v

Y?
For Loop /\\\\

S CAY

For loop provcales 4:mechanism to repeat a task until a particular condition is True. It
IS usually kOOV\m-asa determinate or definite loop because the programmer knows
exactly how \ny times the loop will repeat. The for...in statement is a looping
statementbK in Python to iterate over a sequence of objects.

Syntax of for Loop

for loop_contol_var in sequence:
statement block

-\;\\ y
~ —
For Loop and Rg@ggi@M|on

The range() gﬁonogtié\l\k\&built-in function in Python that is used to iterate over a
sequencef numbers. The syntax of range() is range(beg, end, [step])

The range()produces a sequence of numbers starting with beg (inclusive) and ending
with one legﬂﬁan the number end. The step argument is option (that is why it is
placed in brackéts). By default, every number in the range is incremented by 1 but we

can specify a different increment using step. It can be both negative and positive, but
not zero.

beg)\ /i step|
2 L)

L Ly :

for i in range(l, 5): for i in range(l, 10, 2):
print(i, end= " ") print(i, end= " " }"*i:;:' end]

= Print numbers

OUTPUT in the same line OUTPUT

1234 13 579

for 1 in fangé{1@)! for 1 in range(1,15): for 1 in range(1,20,3):
print (i,vemd= " ') print (i, end= " ') print (i, end= ' ")

QUTPUT QUTPUT QUTPUT
0123456789 1234567891011121314 1471013 16 19

Nested Loops o ;\

A
,\::Fjii/\

~ A
Pythong@ows*@ﬁsﬂrs to have nested loops, that is, loops that can be placed
insideotherteaps. Although this feature will work with any loop like while loop
as wellgs@br laop.

A for todp-can be used to control the number of times a particular set of
statements will be executed. Another outer loop could be used to control the
number of times that a whole loop is repeated.
Loops should be properly indented to identify
which statements are contained

within each for statement.

print()
for j in range(5):

print{("*" . end=" ')

< e
1. Write a program to sum the diwaw @
n=int(input("Enter a number: ')_O/TS @
tot=0
| &
while(n=8]: @ '/
dig = n%l

tot = t dj
l.j__zfi digits is:",tot)

n =©ﬁ°@f1a
o calculate factorial of a given number.

He

He oM W e

He

G
%’@

H

n=int (1 Enter number:"))
fact=1
while(n=0):

fact=fact*n

n=n-1
print("Factorial of the number is: ")
print(fact)

He ol He H M W e

He

Write a pregram to print Fibonacci series.

a=0
b=1
n=int(input("Enter the number of terms needed "))
printia,b,end=" ")
while(n-2):
c=a+b
a=b
b=c
print(c,end=" ")
n=n-1

Mol B B R M W B R e

=\ Y

Break Statement i Python

The break statenzent 'n@;ﬁénis used to terminate the loop or statement in which it is
9 (4 \K\/
present. v =

N\
RGO —
% /9§;\ .

A\\Y

for / while loop:
statement(s)

. -

if condition:
break
statement(s)

loop end

NN
P —\
AN
Continue Stag@nﬂﬁ\m*ython
Continue is also &lgo é@lﬁbl statement just like the break statement. continue
statement iso@gp_gfﬁ\ Ythat of the break statement, instead of terminating the loop, it

forces to @?@@\é{tlﬁj‘r@xt iteration of the loop. As the name suggests the continue
statement fon }he loop to continue or execute the next iteration.

for / while loop:
statement(s)
1T condition:
continue
statement(s)

Pass Statement in P\y@h(ﬁ

As the name suggestspass statement simply does nothing. The pass statement in
Python is used when a staterhent is required syntactically but you do not want any
command or g:}bﬁe tg@geéme. It is like a null operation, as nothing will happen if it is

executed. < : o
function/ condition / loop:

pass

Using continue to skip specific iterations

for i in range(5):

if 1 == 4:

: continue # Skip iteration when i equals 2
else:

print(i)

¢ # Using pass to create a placeholder or empty block
¢ for 1 in range(5):
if i = 2:
Do nothing when i equals 2
else:

print(i)

C
R ‘

¥

@Cj fﬁmnk You so much for watching
O
Subscribe For More Videos

Join Telegram Channel for Notes

* ENGINEERING
. COLLEGE HUB

NN AN s A T NN

“You can be discouraged by failure or you can learn from ‘
it. So go ahead and make mistakes. Make all you can be- : X

cause that's where you will find success, on the other side
of failure.”

.
e
- -
e
13 . +
* ¥ -
:
+

+
o
-

| n :0 4+ év: %n H)
SCAN FOR MORE.. DN NN

https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://engineeringcollegehub.wordpress.com/

A
& \\\\
Pythanﬁo gramming ecc3o2/ Becaozs
>~ BCC302H/ BCCA02H)

"\
Python Complex data types

Unit-3 ONE SHOT

PYQS + IMP QUESTIONS
Multi Atoms Plus

%

Syllabus D)
g

Pythos Complex data types: Using string data type and string operations, Defining list

andtdist slicing, Use of Tuple data type. String, List and Dictionary, Manipulations Building

blocks of python programs, string manipulation methods, List manipulation. Dictionary

manipulation; Programming using string, list and dictionary in-built functions. Python

Functions, Organizing python codes using functions.

e String and its Operations - 2021-22
e Listand its Operations - 2022-23

e Tuple and Dictionary - 2021-22(2)
e Functions - 2022-23

Multi Atoms Plus

| >
Introdutﬁn to Python Complex Data Types:
@§%

° Pytﬁ%n offers,various data types to store and manipulate data.

o CGomplex data types include strings, lists, tuples, and dictionaries.

o [hese data types serve different purposes and have unique characteristics.

message =
print(message)

Multi Atoms Plus

NN
Python String: - \\\v

Strings in Pythoén El e@(ﬂﬁed as a contiguous set of characters represented in the
quotation r{sarks \on/allows either pair of single or double quotes.

Dperatlolfsp\

1. Concatenatfén Concatenation involves combining two or more strings into a
single string.

2. Indexing: Indexing allows accessing individual characters within a string using
their positions (indices).

e Python uses zero-based indexing, where the first character is at index 0.

3. Length: The ‘len()’ function returns the length of a string, i.e., the number of
characters it contains.

Multi Atoms Plus

\\v

4. Case Conversion: %trmg\@éﬂiﬂ\hke upper(), lower(), capitalize(), and title() can
change the case o\@haéaﬁ %a string.

o RN
5. String § Splitti _&nﬁommg

e The s O od splits a string into a list of substrings based on a delimiter.
e The join(hmethod concatenates elements of a list into a single string with a
specified -

Lets Code

Multi Atoms Plus

HoH R W He

He

H

H oW W B W

HoH He

1.Concatenation G\ y

greeting = "Hello"

name = "Alice"” Y -—:jz)
message = greeting + ", " + name + "
print(message) # Output: Hello, Ak@éﬁ

print(message[8])

2. Indexing: f
message = "Hello" . t% ’ (,j\\\)\ﬁ

print{message[4])

A
3. Length: //‘;}‘

message = "Hello, World!"
print({len(message)) # Out

4, Case Conversion:

message = "Hello, World!"

printi{message.upper(}) # Output: HELLO, WORLD!
print(message.lower()) # Output: helle, world!
printi{message.capitalize()) # Output: Hello, world!
print(message.title()) # Output: Helle, Werld!

5. String Splitting and Joining:

sentence = "Hello, how are you?"
words = sentence.split() # Split by whitespace

print(words) # Output: ['Hello,', '"how', ‘'are', 'you?']
words = ["Hello", "how", "are", "you?"]

sentence = " ".join({words) # Join with a whitespace separator
print{sentence) # Output: Helle how are you?

Multi Atoms Plus

=\
String Slicing - Q\\

e string sligl lglx\\tebhrfque used to extract a portion of a string by specifying a
C/ e ——
range, of md@&s

e Syntax’ gt g[start stop:step]
N

Basic

Omitting Start or End
Negative Indices
Step Parameter
Reversing a String

IR

Multi Atoms Plus

< \ Vg A

1. Basic Cf\ v @
message = "Hello, World!" N Q @
print(message[2:6]) # Output: “Eéég'

@x 4
2. Omitting Start or End

i

If you omit the star, @haraﬂifﬁl, tarts from the beginning of the string.
If you omit the eqﬂjééf?neter,~‘ji:) extends to the end of the string.
message = "Hell %/.
print(messagel[:5] Au

print(message[7:]

3. Negative Indices
Megative indices count from the end of the string.
Slicing with negative indices allows you to extract substrings from the end of the string.

message = “"Hello, World!"

print(message[-6:-11) # Output: "World"

4. S5tep Parameter

The step parameter specifies how many characters to skip between each character included in the slice.
message = "Hello, World!"

print(message[::2]) # Output: "HloWrd"

5. Reversing a String

message = "Hello, World!"
print({message[::-1]1) # Output: "!dlrowW ,olleH”

Lists in Python 2{

e Listsare ordefc%d/ g{ns of items in Python.
e They are sa:tlﬁ d—ean contain elements of different data types, including

integers j@%ﬁ&&mgs and even other lists.

numbers —\[I, . 3; 4, 5]
fruits = ['& - .]
mixed_list = [1, : ; Truel

Appending Elements
Removing Elements
Slicing Lists
Concatenating Lists
Reversing a String

o = e (=

He e

He M e He o He

H M W R H e He e e

He e

3. Appending Elements: ’ \% e
You can add elements to the end of a list g t~§~f?:) methp
fruits = ["apple', 'banana', 'orange’

fruits.append('grape')

print(fruits) # Output: 4§f§§§'

b. Removing Elements;
Elements can be rggg d a 11 u5 methods 1ike remove() or pop().

© <

, 'orange’]

€. Slicing Lists:
Slicing allows you to extract a portion of a list.

numbers = [1, 2, 3, 4, 5]
subset = numbers[1:4]
print({subset) # Output: [2, 3, 4]

d. Concatenating Lists:
Lists can be concatenated using the + operator.

listl = [1, 2, 3]

list2 = [4, 5, 6]

combined list = listl + list2

print(combined list) # Output: [1, 2, 3, 4, 5, 6]

-> Lists are mutable, meaning their elements can be changed after creation.

Multi Atoms Plus

-> They offer flexibility and are widely used for storing and manipulating collections of data in Python.

2022-23- 2marks N

What is the difference B@%Jeen append and extend in Python?

I

add multiple elements (from an iterable) to th
Functmnallt& adds.a single’element at the end of the list. gt erable) e
end of the list.

Accept an iterable (like a list, tuple, or string)
as an argument.

Argument Type | Accept a single element as an argument.

Multi Atoms Plus

NN
Lists Compreh nsu{@UZZ 23

Python also supports com Kted lists called list comprehensions having the following
syntax. List = @XDF%S\\% f variable in sequence]

Where, the® exp Qgsron 15 evaluated once, for every item in the sequence.

List compre\enspns help programmers to create lists in a concise way. This is mainly
beneficial to make new lists where each element is the obtained by applying some
operations to each member of another sequence or iterable. List comprehension is also
used to create a subsequence of those elements that satisfy a certain condition.

i Atoms Plus

cubes = [] & an empty list

for 1 in range{11):
cubes.append({1**3}
print(“Cubes of numbers from 1-1@ :

s cubes)

OUTPUT
Cubes of numbers from 1-18 : [8, 1, B, 27, 64, 125, 216, 343, 512, 729, 1000]

I I] ~—£§§§§f§}/
4§\ /;.«<§§;f\“
e Tuples are ordere C@g@ﬂons of elements in Python.

e They are githilartolists but are immutable, meaning their elements cannot be

hangetl after creation.
change 9@&5&@ ion

cnﬁrdinat;§\= {40, 20)
fruits = (; ’)
mixed tuple = (1, - , True)

1. Immutable Nature
2. Tuple Unpacking
3. Length and Membership Test

He e

He M He

He

He e ol He W R B He e

a. Immutable Nature: C S V, Dt
Once a tuple is created, its elements cannot be modifi ’aéa{, 0 ed.
coordinates = (1@, 28) Y Q
coordinates[8] = 5 # This will raise aépeEr
b. Tuple Unpacking: %
77
emen

Tuple unpacking allows you to asn th 3 le to separate variables.
coordinates = (1@, 20) @% Q

X, y = coordinates C
print(x, y) # Output: & L Q
c. Length and MembersHl ‘Y\
/'\
The len() function retufns a tuple, i.e., the number of elements it contains.
The in and not in operators a to test for membership in a tuple.
fruits = ('apple’', 'banana’, nge’)
print(len{fruits)) # Output: 3
print(‘banana’ in fruits) # Output: True
Key Points:
Tuples provide a lightweight data structure for storing collections of items.
They are commenly used for representing fixed collections of data, such as coordinates, database records, or function return values.
While tuples are immutable, they can contain mutable objects such as lists.

Ques. Write a Python Program to add an item in a tuple (2821-22)

tuplex = (2,3,4,5);

Convert the tuple to a list.

listx = List(tuplex)

Use different methods to add items to the list.

listx.append(38)

Convert the modified list back to a tuple to obtain 'tuplex' with the added element.
tuplex = tuple(listx)

ﬁrzzi?:c[u;r:xrinal '"tuplex' tuple with the added element M u lti Ato ms Plus

N\ M

Dictionaries in £yt(&(\2i02’”'

o D|ct|onar|es ai-fe u eéd collections of key-value pairs in Python.

e They proxc/ue lerway to store and retrieve data, where each value is
assoua%ddghﬁumque key.
person = { B , ; : : 3

1. Adding Items
2. Removing Items
3. Dictionary Methods - keys() , values() , items().

Multi Atoms Plus

oM W W W H=

He

He

a. Adding Items: C" V

New key-value pairs can be added to a dictio

person = {"name": "Alice", "age": ggi

person["city”] = "New York" $% / \
print(person) (
9
b. Removing Items: ©% Q
Items can be remov m(:—-ﬁ i

person = {"name":<§ ifg:, "age’s
del person["age" 7
print({person)

person.pop(”city")
print(person)

, "city": "New York"}

Dictionary Methods:
a. keysi):
The keys() methed returns a view of all keys in the dictionary.

person = {"name": "Alice", "age": 38, "city": "New York"}
print(person.keys()) # Output: dict keys(['name', 'age', 'city'l)
b. values():

The wvalues() method returns a view of all values in the dictionary.

person = {"name": "Alice", "age": 38, "city": "New York"}
print(person.values()) # Output: dict values(['Alice', 38, "New York'])
c. items():

sing the del keyword or the pop() method.

Multi Atoms Plus

Dictionary Methods:

a. keys():

The keys() method returns a £§f§§§ j dictionary.
person = {"name": "Alice"eg,'age"|: ; .
print({person.keys()) %%pgféfgj dict ke name', 'age', ‘city'l)

b. values(): S (if_' .‘_::3

The values() mE§$ returns of all values in the dictionary.

\/CQ ": 308, "city": "New York"}

put: dict values(['Alice', 38, 'New York'])

person = {"name": "Al
print(person.values())

c. items():

The items() method returns a view of all key-wvalue pairs in the dictionary as tuples.

person = {"name”: "Alice", "age": 38, "city": "New York"}

printi{person.items()) # Output: dict_items([{'name', 'Alice'}, ('age’, 38), ('city', 'Mew York'}])
Key Points:

Dictionaries are versatile data structures used to store key-value pairs.
They offer fast and efficient lookup capabilities, making them ideal for various programming tasks im Python.

Multi Atoms Plus

=\ >
Functions Q\\

® Funcnon§%reﬁf§;§ﬂelﬂocksofcodethatpeﬁorn1speuﬁctasks
o They{.%y:\ &mzecodemto manageable chunks, promote code reuse, and

enhanc\?r dability.
/
Lets Code

Multi Atoms Plus

H e

1. Introduction: C;X y @\)

Functions are reusable blocks of code th P
They help organize code into man eabl unks ,\promoie l:c-de e, and enhance readability.

2. Defining Functions: /\(
Functions are deflnedé@ng e followed by the function name and parameters enclosed in parentheses.

Ph\d

def greet(name) <

print(" HEU.D%%
/s

3. Calling Functions:

w i

Functions are called by wuSing their name followed by parentheses containing any required arguments.

greet("Alice™) # Output: Hello, Alice!

4, Parameters and Arguments:

Parameters are placeholders for data that the function expects to receive.
Arguments are the actual values passed to the function when it is called.

def add(x=, y):
return x + y

result = add(3, 5)

print{result] # Output: 8 MUlti Atoms Plus

[~ g
5. Return Statement: CZ\ y @
The return statement allows a functig n .__:j:)ck t caller.
Functions can return one or ggg? va .
def square(x): 4§§§ /
return x ** 2 w
¢
result = square(4), & \;;7
print(result) ﬁ@y <fi‘. 6 _“:i)

6. Default Pfé{@‘;

Default parameters

efined values and are used when no argument is provided.

def greet(name="Guest y:
print("Hello, " + name + "1}

greet() # OQutput: Hello, Guest!
greet("Alice") # Output: Hello, Alice!

7. Lambda Functions:

Lambda functions, alsoc known as anonymous functions, are small, single-expression functions.

They are defined using the lambda keyword and are often used for short, simple operations.

double = lambda x: x * 2
print(double(5)) +# Output: 1@

Multi Atoms Plus

H ol M B He He

He e

H ol e

8. Recursion:
Recursion is a technique in whigh a tion itself lve smaller instances of the same problem.

def factorialin):
if n == @:

return 1

else:

return

result = factorj
print(result)

9. Key Points:
Functions are essential building blocks of Python programs.

They encapsulate logic, promote code reuse, and improve code organization.
Understanding how to define, call, and work with functions is crucial for effective Python programming.|

Multi Atoms Plus

@% N\ ‘
" Thank You so much for watching

Subscribe For More Videos

Join Telegram Channel for Notes

Multi Atoms Plus

N\
}\ Multi Atoms Plus

o \\

Python Programming

Unit-4 One Shot (BCC-302 & BCC-402)

Python File Operations

* ENGINEERING
. COLLEGE HUB

NN AN s A T NN

“You can be discouraged by failure or you can learn from ‘
it. So go ahead and make mistakes. Make all you can be- : X

cause that's where you will find success, on the other side
of failure.”

.
e
- -
e
13 . +
* ¥ -
:
+

+
o
-

| n :0 4+ év: %n H)
SCAN FOR MORE.. DN NN

https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://engineeringcollegehub.wordpress.com/

N\
\\ Multi Atoms Plus

2
Python File Operations: Réading files, Writing files in python, Understanding read

functions @%ad(). readline(), readlines(). Understanding write functions, write() and
writelines() Manipulating file pointer using seek Programming, using file operations.

Unit-4 Syllabus - -

Theory + Coding Part + Important Ques

= \\\ Multi Atoms Plus
Introduction to %yghpn%}e Operations

File operatlopfoln P%h%n,allow you to perform various tasks on files such as reading,
writing, a[@pen ifgy-and manipulating the file pointer. Python provides built-in

functions ar{l@ﬁl theds to work with files efficiently.

File: A file is audigital container used to store data on a computer. It has a name, often
with an extension indicating its type (e.g., .txt for text files), and can contain various
types of information such as text, images, or programs. Files are essential for data
allowing information to be saved and retrieved later.

Types of files:

1. Text Files : .txt, log etc.
2. Binary Files : . mp4, .mov, .png etc.

NN
:i\ : Multi Atoms Plus

AN —
File operations in $R%Yt@\}\vi31% several key tasks. You can open a file in various
modes such as ogvea/td (’r’)@rrite (‘w'), and append (a'). Reading operations include
reading the 5@?@& “onfent at once, reading line by line, or reading all lines into a
list. Writing 9{)@)\ tions-allow you to write a single string or multiple lines to a file.

N

Python can be sed to perform operations on a file. (read & write data)

Perform Operation — Close the File

open() read() or write() close()

&\\ Y Multi Atoms Plus
File Opening in 5&ylbpn\\v 7

%
File opemng@ \ﬁ"Pyﬂ;&Mlves using the open() function, which allows you to access

and interagt wltm
(o)
file = open(filename, mode)

filename: Specifies the name of the file you want to open, including its path if it's not
in the current directory.

mode: Specifies the mode in which the file is opened.
Opening a file in read mode

file = open(example.txt, '

N\ Y
Different Modes~ - Q\\\Y\

ns,a file for reading. (default mode)

Multi Atoms Plus

e 'T:Read rrgoode./
o 'w: Write m&%@pens a file for writing. If the file exists, it truncates the file to

zZero len@h%e file does not exist, it creates a new file.

e 2" Appendmode. Opens a file for appending data. The file pointer is at the end
of the file if the file exists. If the file does not exist, it creates a new file for writing.

e b Binary mode. This can be added to any of the above modes (e.g., Tb) 'wb), ‘ab')
to work with binary files.

e '+ Open a file for updating (reading and writing). (eg. r+, w+)

It's recommended to use the with statement when opening files. This ensures that the file is
properly closed after its suite finishes, even if an exception is raised.

with open('example.txt, 'r') as file:

NN
Reading files in Pyt m%i\

It involves severaﬁme@??d% to retrieve data stored in files. The main methods for
reading files arco \\

o read@Q \v\
&Y

® rea
e readlines)v

Reading the Entire File: The read() method reads the entire content of the file at once
and returns it as a single string. This is useful for small files but can be inefficient for
large files as it loads all data into memory.

Multi Atoms Plus

file = open(example.txt’, 'r')
content = file.read()

print(content)

file.close()

AN
A\ Y Multi Atoms Plus
AN —
Reading Line by Line: ﬁé\%\ad‘line() method reads one line at a time from the file.

This is useful fox,;}ptoc\ ssing large files line by line, as it doesn't load the entire file into
memory at ogfe. . N
y 0\5 A:i\\\\v

file = open(’exﬁample.txt’, 'T)
A Vel
line = file.readline()

print(line)
file.close()
strip() removes the newline character

print(line.strip())

AN
i\\/ Multi Atoms Plus

N\
Reading All Lines: Cﬁl;:r@e () method reads all lines of the file and returns them
as a list of strings, w ereéseach string is a line from the file. This method can be

convenient f%fdt\eli' r lines but may be inefficient for very large files.

O —
file = oper(example.txt;'r')
LON NN
lines = file.readlineés()
N Y%

print(lines)

file.close()

o/p = ['fsfs\n| 'sfsfsfsf\n 'sfsf']

strip() removes the newline character

print(lines.strip())

Let’s Code..

AN
- :i\v Multi Atoms Plus
Writing to files in Python
It is an essential per 'oﬁ/fér'data storage, logging, configuration files, and more. Here

& |
are the basic’method Efwriting to files, including writing a single string, writing
1 1 S S =
multiple lﬁqgsé pending to a file.

1. Writing a Single String
The write() method allows you to write a single string to a file. This is useful for simple

text output. If the file does not exist, it will be created. If it does exist, the file will be
truncated (emptied) before writing the new content.

file = open(example.txt, 'w')
file.write('Hello, World!\n')
file.close()

Multi Atoms Plus
N
2. Writing Multlp] eLi s\

The wntehnes()°°5“ t\ lows you to write a list of strings to a file. Each string in the
list is ertcfn :tuEL e file sequentially. This method does not add new lines
automatlwlj,y’ig\éa\h string should end with a newline character if needed.

lines = ['First line\n', 'Second line\n', "Third line\n']
file = open(example.txt, 'w')
file.writelines(lines)

file.close()

N\
\\ Y Multi Atoms Plus

v\
3. Appending to a \\
To append da’ra@to G(tmg file without truncating it, you can open the file in

append mo@ (n?w data will be added at the end of the file.
S AN
file = open(€xampletxt, a')
./

file.write('This line will be appended.\n')
file.close()

By using these methods, you can efficiently write data to files in Python, ensuring
proper file management and data persistence. Always remember to close the file after
writing to ensure that all data is flushed from the buffer and saved to the disk, and to
release system resources.

Let’s Code..

AN\
:i\\\\/ Multi Atoms Plus

A7 —
T" Open text file f\g{%ﬁ;&lﬂ'h@\h‘\lﬁz stream is positioned at the beginning of the file.
7R
T+" Open for Cge%dﬁ%\ Qting. The stream is positioned at the beginning of the file.
Cfb NN
w" Trung@:t/&ogf@ o length or create text file for writing. The stream —beginning.
w+" Open%@ding + writing. The file is created if it does not exist, otherwise it is

truncated. The stream — beginning of the file.

a" Open for writing. The file is created if it does not exist. The stream is positioned at

the end of the file. Subsequent writes to the file will always end up at the then current
end of file.

‘a+" Open for reading + writing. The file is created if it does not exist. The stream is
positioned at the end of the file.

Let’s Code..

\\
\A\ , Multi Atoms Plus

Deleting the fI|E‘ﬂ]APﬁE0]T

To delete a ﬁlgcom Py h\ uvcan use the os.remove() function from the os module.
Here’s how gou 'ca-n-d.elete a file:

AN
import os ' >

file_path = example txt'
if os.path.exists(file_path):
osremove(file_path)
print(f"{file_path} successfully deleted.")
else:

print(f"{file_path} does not exist.")
Let’s Code..

N\

AN
\\\ - Multi Atoms Plus

~—

Q. WAPP to write theq% of letters and digits in the given input
String in a file ol\{feﬁf

D’
input_ strmg = 1nput("Enter a string: ") # Write counts to a file
/R \
letters_count 5.0~/ = ¢ file_path = letter_digit_counts.txt'
AN
digits_count = 0 7‘/ file = open(file_path, 'w')

file.write(f"Number of letters:

_ : {letters_count}\n")
for char in input_string:

file.write(f"Number of digits: {digits_count}\n")
file.close()

if char.isalpha():
letters_count +=1
elif char.isdigit():

digits_count += 1

Let’s Code..

A\
\A\v Multi Atoms Plus

File Handler in Pvth@\\

&Y
File Handler Bafeérs 6/

o Afile hGndEﬁkﬁI\’/object is an interface to interact with files in Python
progran{é \\Y\

o Itis crer\tew}en a file is opened using the open() function.

Operations:

e Reading: Use methods like read(), readline(), or iterate over lines with a loop.

e Writing: Employ write() to add content to a file, or writelines() to write multiple
lines at once.

e Moving the Pointer: Adjust the file pointer with seek() to navigate through the
file.

e Querying Position: Determine the current position with tell().

Multi Atoms Plus

N—
Modes: as prev1ous \s\v
/

Closing Files:
g Co\ A\\\/
o C(allg Ql%/e()@@ﬁle handler to free up resources once operations are done.

Error Handﬁngév

e Handle potential errors like FileNotFoundError or IOError when opening or
manipulating files.

Best Practices:

e Always close files after use to prevent resource leaks.
e Utilize context managers (with statement) for cleaner and safer file handling.
e Handle exceptions to gracefully manage file-related errors.

- :\\\V Multi Atoms Plus

seek() Functiogjen) Py

It is used to ch%r%c;ea e_ﬁrenvt position (or offset) of the file pointer within a file. This

function is particu useful when you need to navigate to a specific location in a file

to read orﬂfr;@e\?ﬁ%\
NN
file_object.seek(oftset, whence)

offset: It specifies the number of bytes to move the file pointer.

whence: It specifies the reference point from where the offset is calculated. It can take
one of the following values:

e 0 (default): Start of the file
e 1: Current position of the file pointer
e 2:End of the file

NN

Moving the FI|an o?m*\\
A
\A\\

° Whemy /u ep%le the file pointer starts at the beginning (0 offset).

Multi Atoms Plus

o seek(oﬂ‘sgt J moves the pointer offset bytes from the beginning of the file.
o seek(offset, 1) moves the pointer offset bytes from the current position.

o seek(offset, 2) moves the pointer offset bytes from the end of the file (a negative

offset is usually used in this case).

NN

v\

Open a file Multi Atoms Plus

file = open(exampm t);tw 3
Move pomter 79) the 10th byte from the start

file. seek(lO 0) \A\}\ =

print(file. read(3) # Reads 5 bytes from the current position (10th byte)

Move 5 bytes forward from the current position

file.seek(5, 1)

print(fileread(10)) # Reads 10 bytes from the current position (15th byte)

Move to the 10 bytes before the end of the file

file.seek(-10, 2)

print(fileread(5)) # Reads 5 bytes from this position (10 bytes before the end)
Close the file

file.close()

AN
= \\ Multi Atoms Plus

tell() function m%ngtJm\a y
@)

The tell() fucr}suon(tns“an integer that represents the current position of the file
pointer inByte “f\Oﬁ‘l “the beginning of the file.

file_obj ect.teﬂ())

Understanding and utilizing tell() allows precise control over file operations,
especially when dealing with large files or when needing to track and manage
file positions dynamically during file processing in Python.

Let’s Code..

AN Multi Atoms Plus
SN
S

N7

NN

V% DN Thanks for Watching

QL
Please Subscribe and Share Multi Atoms Plus

Join Telegram for Notes

* ENGINEERING
. COLLEGE HUB

NN AN s A T NN

“You can be discouraged by failure or you can learn from ‘
it. So go ahead and make mistakes. Make all you can be- : X

cause that's where you will find success, on the other side
of failure.”

.
e
- -
e
13 . +
* ¥ -
:
+

+
o
-

| n :0 4+ év: %n H)
SCAN FOR MORE.. DN NN

https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://engineeringcollegehub.wordpress.com/

N

\\\\
\é \;\ N

- ~Python Programming
" Unit-5 One Shot

(BCC302 [BCC402/ BCC302H | BCC402H)

Python Packages

Multi Atoms Plus

A
Unit-5 Aktu Updated Syllabus

Python pack%@ Sxmple programs using the built-in functions of packages matplotlib,

numpy, das—etc.. GUI Programming: Tkinter introduction, Tkinter and
PythonProgramming, Tk Widgets, Tkinter examples. Python programming with IDE.

Multi Atoms Plus

Python Packages - A)/\\

A Python pacg’dg‘e &\a&cbﬂéctlon of modules bundled together. These modules can

include fugie ‘,\E?sses and variables that can be used in your Python programs.
Packages h e organize and structure code, making it more modular, reusable, and
maintainable.” »

Key Concepts:

1. Module: A single file containing Python code (functions, classes, variables, etc.)

with a .py extension.
2. Package: A directory containing multiple modules and an __init__.py file, which
makes it a package. The __init__.py file can be empty or execute initialization code

for the package.
Multi Atoms Plus

¥ \A\\\
Creating a Pacl@gg) \\V\

roject/
L. D1rector\§ otr&ﬁ&xé*/ Proj
— mypackage/

>\\T\ | — _dinit__
| — modulel
| L— module2
L— main
2. modulel.py: - (name)

3. module2.py: (i)

a+b

Multi Atoms Plus

7&mport mypackage

print(mypackage.greet("Alice")) # Output: Hello, Alice!
print(mypackage.add(z, 4)) # Qutput: 7

NN,

Benefits of Using Bgﬁk%es
(¢ A"
1. Modularg‘rco Bmﬁkd‘mﬁn large programs into smaller, manageable, and reusable
moduR us,. \\v
2. Namesf Management: Avoid name conflicts by organizing code into separate
namespaces?

3. Reusability: Easily reuse code across different projects.
4. Maintainability: Easier to manage and maintain code.

Multi Atoms Plus

NN,
Popular Python P ag&a@%s

Matplotlib: F@r cre&ﬁ*}ggkta(tlc animated, and interactive visualizations.
\
Q

Numpy: For/rg.lﬁengal computations and operations on large arrays and matrices.
Pandas: For data-manipulation and analysis.
Requests: For making HTTP requests.

Installing Packages

Use pip, the Python package installer, to install packages from the Python Package
Index (PyPI).

pip install package_name

Multi Atoms Plus

NN
Introduction to Mat Np/lo%b

Qé’ \ N
Matplotlib ise%cogaﬁféhem‘ve library for creating static, animated, and interactive

visualizatighs ln\gyéthon. It is widely used for data visualization in scientific computing,

data sc1enca,\ machine learning.

Installation

pip install matplotlib

Multi Atoms Plus

é\ y

Types of Matplatlib <~ -

el
==

OV XIAAWVHFEWN -~

Line Plot - Eéspl ys\data trends over time.
Scatterc,Plot-d‘EhBNs Telationships between variables.
Bar Chara: %ompares categorical data values.
Hlstogr\m Represents data distribution frequencies.
Pie Chart - lllustrates proportions of a whole.

Box Plot - Summarizes data distribution quartiles.
Violin Plot - Displays data distribution and density.
Heatmap - Visualizes matrix-like data with color.

Area Plot - Fills the area under a curve.

3D Plot - Represents three-dimensional data visually.

Subplots - Multiple plots in one figure.
Multi Atoms Plus

NN
Matplﬂtllb PVP'OQ & SO\

Most of the Mato&lo’rl b utlf ties lies under the pyplot submodule, and are usually
imported unc@r th e\bLt atis: import matplotlib.pyplot as plt

Now the Ppr@t:Package can be referred to as plt.
import matlglo’slib.pyplot as plt
Import numpy as np

xpoints = np.array([0, 6])
ypoints = np.array([0, 250])
plt.plot(xpoints, ypoints)
plt.show()

Multi Atoms Plus

AN
Line plot with M@tpl@ﬁﬁ
A line plot in Matplotlib istised to display data points connected by straight lines. It's
particularly 6©CgleLﬁ)}%howing trends over time or continuous data.

O\
: art mat AN 15N ON DA - ~7
import matpko¥lilipypbot—as—plt

Basic Line Plot

import numpy as(pp

Sample data

X, = DA (¢ 4, 51)

y = np. (- : ; ;

Create a line plot

plt. (x, y, marker='0', color="b") E
g

Add title and labels 2

plt. ('Basic Line Plot') 3

plt. (*X-axis Label')

plt. ('Y-axis Label')

Show grid
plt. ()

Display the plot
plt. () ; : . 2.5 3.0 35 4.0
E : X-axis Label

e ¥ A OA A

;\\\ y

==X

. '\T‘:\)
Customizations~ ~ .~

¥ % \& &)

\\ =~

Q -

Use color nar@e?\&e g5 ’blue), hex codes (e.g., '#FF5733'), or RGB tuples (e.g., (0.1, 0.2,
0.5)).

Line Color: g

Markers:

Types include "' (point), o' (circle), 's' (square), "M (triangle), etc.

Multi Atoms Plus

\§\\\\v
: VT —
Bar plot with Matplotlib-
$\ /2)\ A
A bar plot (or bar c/harQ i(ﬂ/latplotlib is used to display categorical data with
rectangular Cb/@?skli\a\cm\ajé length represents the value of the category it represents.

import matpl®Xlibipypltet—asmplt

Basic Bar Plot
Sample data
categories = ['ANNYE, 'C', 'D']

values = [10, : ¢]

Create a bar plot
plt. (categories, values, color='skyblue')

Add title and labels

plt. ('Basic Bar Plot')

plt. ('Categories')

plt. (*Values')

Show grid

plt. (axis='y', linestyle='--', alpha=)

Display the plot
plt. ()

B C

IO Categories
¥ _LWGLA WA L A

BN
Horizontal Bar Plot: N\

Qé"\\/\

plt.barh(categories,\valtiés, color=)

Basic BarPlot

Multi Atoms Plus

NN
Scatter plot W|t Ma{plnilb

A scatter plot in @/Iatpl&tlrbﬁls used to display the relationship between two variables by

plotting data@mm&ﬁn 2€artesian plane. Each point represents a pair of values from
two datasgta,, AONT

Basic Scatter Plot

import matplotdb:.pyplot as plt

Sample data
""’ = [’ ’ ’ r]

y. - 4 ’ ’ ’ ’]

Create a scatter plot
plt. (x, y, color="blue’', marker='0")

©
Q
(]
-
1a
x
>
DU

Add title 9nd labels

plt. (sic Scatter Plot')
plt. (*X-axis Label')
plt ('Y-axis Label')

Display the plot

- 4
plt. () X-axis Label

'\\\ L
pie chart with M@tpl(@hh >

A pie chart in Moétplotl@ K used to display data as slices of a circle, representing
proportions ¢ as aw}m\}% Each slice corresponds to a category and its size represents the

\
roportioxn of.t t.category relative to the total.
prop gory

\//\/"‘7
import mat ﬁTo 120 . pyplot as plt

Sample data
abels = ['A', 'B', 'C', 'D']
Create a pie chart

plt. (sizes, labels=labels)

Display the plot
plt. ()

Multi Atoms Plus

N\
area plot in Matp IotIQk\v

An area plot in Mmplo%ﬁﬁ used to display data where the area under a line is filled

in, making it easy to“@ ze cumulative totals or the relative size of different
C/
t 1&
ca egorles<¢ ve;\t& €

import matpléblib: pyplot as plt

Basic Area Plot

Sample data
x = [X;: 23,0455
y = [’ ’ ’ ’]

Create an area plot

[
plt. (x, y, color="skyblue', alpha=) E
Add title and labels >
plt. ('Basic Area Plot')
plt. ('X-axis Label')
plt. ('Y-axis Label')

Display the plot
olt. () : 15 20 25 30 35 40 45

X-axis Label
IVIUILL ALUIILLS

=\ Y
NumPy 4 '\\i‘?*l 7

NumPy is a fundamentallibraty for numerical computing in Python. It provides

A

support for arrays, matrices,and a wide range of mathematical functions to operate on

Y _
these data str@%’g;rQ\ N’
O mrm—

QQ/{} \\i\:

Key Features-of NumPy

N-dimensional Afrays:

numpy.array(): Creates arrays for efficient storage and manipulation of numerical data.
Mathematical Functions:

Functions for mathematical operations, including addition, subtraction, multiplication, and
complex functions like trigonometric functions.

Array Operations:

Operations like element-wise addition, multiplication, and other mathematical operations on

e Multi Atoms Plus

MO
Linear Algebra: \i\

Functions for hrféra; lgé operations such as dot products, matrix multiplication,
and e1genva1 \53 Ssition.

Random NL@b> eneratlon
Functions to generate random numbers and distributions.
Array Manipulation:

Functions for reshaping, slicing, and aggregating data.

Multi Atoms Plus

import numpy as np\§>

N
Create a NumP¥
array = np.gﬁf%

Perfonﬁg

print("Ar
print(“"Mean:", .mean(array))
print("Sum:", np.sum(array))

Create a 2D array (matrix)
matrix = np.array([[1, 2, 3], [4, 5, 6]1])

Matrix operations

print("Matrix:\n", matrix)
print("Transpose:\n", np.transpose(matrix))
print("Element-wise addition:\n", matrix + 10)

Array: [1 2 3 4 5]
Mean: 3.0
Sum: 15
Matrix:

[[1 2 3]

[4 5 6]]
Transpose:

[[1 4]

[2 5]

[3 6]]
Element-wise addition:

L1112 23]

[14 15 16]]

NN
\\v —
C 5
Pandas is a stNerful\ébafa-rﬁampulatlon and analysis library for Python. It provides data
structures Ql%l%ég@?ames and Series that make it easy to handle and analyze large

datasets. P s.especially useful for working with tabular data and provides a
variety of functiofis to clean, transform, and analyze data.

Pandas SA

pandas pd

Core Features of Pandas
Data Structures:

Series: A one-dimensional labeled array that can hold any data type.

DataFrame: A two-dimensional labeled data structure with columns of potentially different data
types.
Multi Atoms Plus

. _ N Y
Creating Data Structlkg\g |

< N\
: S AN
Creating a Series™
reating a enggs//\ f¥)
s = pd.Series({I, 2,34, 51,y hame=numbers')
N
print(s) S /\5/>\H\\;
Creating ﬁ)aﬁFrame

df = pd.DataFrame(]

= $H W N F~FO
o5 WiN =

ame: numbers, dtype: int64

At 11, 2,31, A B C
B.[2,'b,], 8 1 a 4.5
'C": [45,5.5, 6.5] 2005
1 2 S CA TS

print(df) Multi Atoms Plus

Data Manipulation: AN
ata Manipula 01; o § '
Indexing and Sel.gction@ Aecessing and manipulating data using labels and

integer-based fndeXing™»—
C/\B :& .

L. Inde)‘ﬁ?}g;agdsge\ction using Labels (loc): Accessing data using labels.
N -

¢ pandas \ pd 1
df = pd.DataFrame({
: [r ’ I]I

: [r r r]I
: [r r r]

value = df.loc[0,]
print(value)

Multi Atoms Plus

Selecting multiple col d
selected_columns = df*
print(selected_cgjﬁh

/)

Selecting a range of rows
selected_rows = df.loc[1:3, :]
print(selected_rows)

Fllterlng ‘? I

fllteredgﬁ Q:\

Filtering rows based on multiple conditions
filtered_df = df[(df['A'] > 1) & (df['C'] < 7)]
print(filtered_df)

Creating a DataB®rame with missing values
df = pd.DataFrame({

'A': [1, 2, np.nan, 4],

‘B [np.nan; ‘b, ‘el t4];

'C': [4.5, np.nan, 6.5, 7.5]

)]

Detecting missing values
missing_values = df.isna()
print(missing_values)

ing a DN .
Creating a Da ame for transformation example
df = pd.DataFrame({
AN X 20 8 AT
'B': [10, 20, 30, 40]

1)

Applying a transformation function
transformed_df = df.apply(lambda x: x * 2)
print(transformed_df)

Data Input/Output: _\g\\\\/

Reading/Writing Data: Fu%gctlon/g ng frormwand writing to various file formats including CSV, Excel

1. Reading CS ! Flle(\l{ d read _csv() to read data from a CSV file.

C/’\,

< N
- pandés ,\pd Name Age City
Alice New York
¢ Reading datafrom a CSV file] Bob Los Angeles
df_csv = pd.read_csv() Carol Chicago
print(df_csv)

2. Reading Excel Files: Using pd.read_excel() to read data from an Excel file.

df_excel = pd.read_excel()
print(df_excel)

Multi Atoms Plus

Creating a DataFrame
df = pd.DataFrame(§§;

garol'],

'Los Angeles', 'Chicago']

Writing data(fo a CSV file
df.to_csv('output.csv', index=False)

. \\\

What is a GUI méPAgtJm\y
A
A Graphlcal JSer I g%g%eé(GUI) in Python is a visual interface that allows users to

interact W<.¢La e‘\anﬁeatmn through graphical elements like windows, buttons, text
fields, and dther idgets, rather than using text-based commands. GUIs make

applications usejlffriendly and visually appealing.

Python offers several libraries to create GUIs, with Tkinter being the most commonly
used due to its simplicity and integration with Python's standard library. Other popular
GUI frameworks include PyQt, Kivy, and wxPython.

Multi Atoms Plus

/\\\\/

import tkinter as tk

\ Ente me:
def update_label(): \::T\ nter your na

name = entry.get() * /‘\\

label. conftg(text%; Hello {néﬁ By
S Submit
\\\ , _
root = tk.Tk()q C/ T
root.title(" §§mpLe Af\gxample)

NP

root.geometry(58 x;ﬂ@)
N n -

S

label = tk.Label(root, text="Enter your name:")
label.pack(pady=10)

Hello, Krishna!

entry = tk.Entry(root)

Submit

button = tk.Button(root, text="Submit", command=update_label)
button.pack(pady=10)

root.mainloop()

viuiu aworns Plus

\\\\
Explanation *\\v\ *

1. Import the Tkinter rr*&dul e 'tkinter tk
This imports the Tcolnte{ %{\}nd makes it available
in the script.

Q _
2. Define the<¢fu;a@1 \to deate the label:

N "
This function re 'ev1e/&the text from the entry widget
and updates the label widget with a greeting.

3. Create the main window:

o tkTKk() creates the main window.

e roottitle("Simple GUI Example") sets the title of
the window.

e rootgeometry("300x200") sets the size of the
window.

root = tk.Tk()
root.title()
root.geometry()

/

wavaw atoms Plus

():
name = entry.get()
label.config(text=)

4. Create and pack the label widgef: sl 20e 1 root gext=ue)

5. Create and 1@3&1{ thieglgumdget

6. Create and pack the button widget:

label widget with-ghe s tevet.
label.pack(padys10) adds the label to the window

with some g%idin’é.\\ \g/

.~ —label.pack(pady=10) Enter your name:
s ,/ \ﬂ\]
tk.Label(root, text—xL%‘lterf ;:ér ame?") creates a

entry = tk.Entry(root)

’Fk Er}[try(xtgre\ates an entry widget for text _ . rvs sk nady=5) \ RAte v, e
input.

entry.pack(pady=5) adds the entry widget to the
window with some padding.

tk.Button(root, text="Submit",
command=update_label) creates a button widget
that calls the update_label function when clicked.

Enter your name:

Submit

button.pack(pady=10) adds the button to the

window with some paddmg. button = tk.Button(root, text= , command=update_label)

button.pack(pady=10)
AGVLILAGL L ALVGVILILLY 4L LMWV

7. Run the main ever\%l 3\\\v

Hello, Multi Atoms!

root.mainlogp() /
\T — Submit

This starts t & %ﬂnter event loop, which waits
for user interactions and updates the GUI

accordingly.

Multi Atoms Plus

Common Tkinter Wid F:-:amples and Definitions
i

Tkinter provides a vgﬁp:-y dpets to create interactive GUI applications. Here are

some of the com@lon kiriter widgets along with their definitions and examples:
AN
1. Buttons AB@&E&Wldget is used to display a clickable button that can trigger a

functlor@ég%m when clicked.

tkinter tk
' ():
print()

root = tk.Tk()
button = tk.Button(root, text= , command=on_button_click) Button clicked!

button.pack()
root.mainloop()

tk. Button(root, text="Click Me", command=on_button_click): Creates a button with the
text "Click Me" that calls the on_button_click function when clicked.
e buttonpack(): Adds the button to the window.

Multi Atoms Plus

B g\\\/
2. Label: A Label Wldget i @Yfl\\,\dlspl av text or images on the screen.

$ﬁ>/

¢ tkinter %: 4.4\

60% NN e
root = tREL N This is a label
label = tk$Lﬁhé1(root, text=)

label.pack()
root.mainloop()

e tkLabel(root, text="This is a label"): Creates a label with the text "This is a label"
e labelpack(): Adds the label to the window.

Multi Atoms Plus

. \\\
3. Entry: An Entry V\édge §l1\sed to creat¢ a single-line text input field.
&

entry = tk.Engry(root
entry.pack()
root.mainloop()

e tkEntry(root): Creates a single-line text input field.
e entry.pack(): Adds the entry field to the window.

Multi Atoms Plus

NN

4 Text: A Text W1dggt is useEN;b create awnulti-line text input field.
SRS

t k in t er t k //f\ Please Subscribe Multi Atoms Plus
\ Join Telegram Channel For Notes
root = tk.Tk{)
text = tk.Text(roob)

text.pack()
root.mainloop()

e tkText(root): Creates a multi-line text input field.
e textpack(): Adds the text field to the window.

Multi Atoms Plus

AN\ Y

5. Checkbutton (Checkb wﬂeckhutton widget is used to create a checkbox
that can be toggle@on

i tklnteé 39 tk\\
. Q | Check me
root = tk. ‘¢() M NN \

checkbox_var‘= tk/ Intvar()

checkbox = tk. Checkbutton(root, text= , variable=checkbox_var)
checkbox.pack() -
root.mainloop() v Check me

e checkbox_var = tk.IntVar(): Creates an integer variable to hold the state of the
checkbox (1 for checked, O for unchecked).

e tk Checkbutton(root, text="Check me", variable=checkbox_var): Creates a
checkbox with the text "Check me" linked to the checkbox_var variable.

e checkbox.pack(): Adds the checkbox to the window.

Multi Atoms Plus

Simple Q@c\.métor IYsing Tkinter

i t tkint tk
HTPOLE LATET a8 add_button = tk. Button(root, text="Add" command=add)

v\
def add(): \ \\\ add_button.pack()

result.set(float(entryl.get()+ flodt(entry2.geb
((ylgetO: (/'y \g o) subtract_button = tk. Button(root, text="Subtract",

command=subtract)

¥ - .
def subtract
ef subtract(): ~ \\ ! subtract_button.pack()

resultset(ﬂoat(en‘rr get()) ﬂoat(entryZ get()))
HlveasiaS

 § ——— : — _n : "
def multiply(): <¢ /; \\\V Zﬁﬁ)jﬁéﬁﬁﬁiplﬁButton(root, text="Multiply",

lt.set(float(enitryd get >('ﬂ t try2.get
result.set(float(enitry ge ()) ™ float(entry2.get())) multiply_button.pack()

def divide(): Y/

resultset(float(entryl.get()) / float(entry2.get())) divide_button = tk.Button(root, text="Divide",

command=divide)

root = tkTk() divide_button.pack()

root.title("Simple Calculator")

root.mainloop()
entryl = tk.Entry(root)
entryl.pack() 12.0 '
Am1|
entry2 = tk.Entry(root) -
entry2.pack() Subtract J
result = tk. DoubleVar() _ Multiply !

result_label = tk. Label(root, textvariable=result)

result_label.pack() Multi Ato Ims Plus

DNMe}

glt.set(float(entryl.get()) + float(entry2.get()))

def subtract():
result.set(float(entryl.get()) - float(entry2.get()))

def multiply():
result.set(float(entryl.g;bf)) * float(entry2.get()))

def divide():
result.set(float(entryl.get()) / float(entry2.get()))

PN

3. Create Main Window: oot = tk\Tk(\)
$ root tltle()

\\\(
This creates the r*an wi & dfthe application and sets its title to "Simple Calculator”.
C/ e ——

4. Create Ent§¢ N
'{)ACE A\t§§\ entryl = tk.Entry(root) entry2 = tk.Entry(root)
«\\\\»// | entryl.pack() entry2.pack()
Creates the second entry widget for user input and adds it to the window.
5. Create Variable for Result: result = tk.Doublevar()

This creates a Tkinter DoubleVar to hold the result of the calculations.

6. Create Result Label:

result_label = tk.Label(root, textvariable=result)
result_label.pack()

This creates a label that displays the result of the calculation. The label's text is bound to the result variable.

Multi Atoms Plus

R/

multiply button = tk.Button(root, text="Multiply", command=multiply)
multiply_button.pack()

divide_button = tk.Button(root, text="Divide", command=divide)
divide_button.pack()

root.mainloop()

PN
Python Programwﬁn&MﬁTﬂE(Integrated Development Environment)

¥
An Integrated ﬁo?velo@ﬁem;]%nmronment (IDE) is a software application that provides

comprehenswe fac}g‘;@'to computer programmers for software development. An IDE typically
includes a sourée ereditor, build automation tools, and a debugger. Here are some popular

IDEs for Pyth\m programmmg and their key features:

1. PyCharm: Developed by JetBrains, PyCharm is a powerful and widely-used IDE for Python. It
comes in two versions: Community (free) and Professional (paid).

Intelligent Code Editor: Code completion, real-time error checking, and quick fixes.
Debugging and Testing: Integrated debugger and test runner.

Version Control: Supports Git, SVN and more.

Web Development: Supports Django, Flask, and other web frameworks.

Multi Atoms Plus

N

2. Visual Studio Code (VS qu A hghtwel Wt, open-source code editor developed by
Microsoft, with extensive Plﬂrx\(m support through extensions.

(A
Extensible: %Rlch \gi/em of extensions, including Python support.

Debugg'ng ;Bu:& debugger.
Integfate% \m'h.nal Access to the terminal within the editor.

Versmn@ ol: - Built-in Git support.

3. Spyder: An open-source IDE specifically designed for scientific computing and data analysis,

often used with Anaconda distribution.

Integrated IPython Console: Enhanced interactive Python shell.
Editor: Syntax highlighting, code completion, and introspection.
Documentation Viewer: Built-in help system.

Plotting: Inline plotting with Matplotlib support.

Multi Atoms Plus

N

2. Visual Studio Code (VS qu A hghtwel Wt, open-source code editor developed by
Microsoft, with extensive Plﬂrx\(m support through extensions.

(A
Extensible: %Rlch \gi/em of extensions, including Python support.

Debugg'ng ;Bu:& debugger.
Integfate% \m'h.nal Access to the terminal within the editor.

Versmn@ ol: - Built-in Git support.

3. Spyder: An open-source IDE specifically designed for scientific computing and data analysis,

often used with Anaconda distribution.

Integrated IPython Console: Enhanced interactive Python shell.
Editor: Syntax highlighting, code completion, and introspection.
Documentation Viewer: Built-in help system.

Plotting: Inline plotting with Matplotlib support.

Multi Atoms Plus

NN,

IDEs that suppoﬁﬁgth% development

° PyCharm \\\\/ e Eric Python IDE

e Visug IQStu €ede e Rodeo

° Spyder Y e Anaconda Navigator

o]upyter\Notébook e IDLE

e Atom | e Geany

e Sublime Text e NetBeans with Python Plugin

e Eclipse with PyDev e Pyzo

e Thonny e Bluefish

e Wing IDE e Emacs with Python Mode

e Komodo IDE e Intelli] IDEA with Python Plugin

Multi Atoms Plus

&)

Please Subscribe Multi Atoms & Multi Atoms Plus
Join Telegram Channel for Notes

All the Best for your Exams

Multi Atoms Plus

* ENGINEERING
. COLLEGE HUB

NN AN s A T NN

“You can be discouraged by failure or you can learn from ‘
it. So go ahead and make mistakes. Make all you can be- : X

cause that's where you will find success, on the other side
of failure.”

.
e
- -
e
13 . +
* ¥ -
:
+

+
o
-

| n :0 4+ év: %n H)
SCAN FOR MORE.. DN NN

https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://chat.whatsapp.com/CYATywDE89KAW9uQrd4V8z
https://engineeringcollegehub.wordpress.com/

